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Abstract 

 

Natural gas storages may be valuated by applying real options theory. However it is crucial, not 

to ignore that most evolving gas spot markets, like the German spot market, lack of liquidity. In this 

context, considering storage operators as price takers does not account for interdependencies of sto‐

rage operations and market prices. This paper offers a novel approach to storage valuation taking in‐

to account  the effect of management decisions on market prices. The within  this paper proposed 

methodology determines the optimal production schedule and value by determining the stochastic 

differential equation describing the storage value and then applying a finite difference scheme. We 

find  that  limited  liquidity  lowers  the storage value and  reduces withdrawal and  injection amounts. 

Further, we observe decreasing reservation prices for injection and withdrawing for growing illiquidi‐

ty resulting in a left shift of injection and withdrawing threshold prices. 
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1 Introduction

Natural gas storages offer flexibility in uncertain markets. The storage owner has the possibility

to buy and inject gas, when prices are low and to sell gas, when prices are high. In uncertain

markets this flexibility creates an additional value. Recent research has started to examine this

value by applying real option theory. To solve this valuation problem De Jong and Walet (2005),

Ludkovski and Carmona (2007) and Boogert and de Jong (2008) apply Least Squares Monte

Carlo Simulations, first derived by Longstaff and Schwartz (2001) for the valuation of financial

options. By contrast Holland (2007) applies a simple Monte Carlo Simulation based approach

and Maragos (2002) employs a forward curve simulation to the storage valuation problem. Be-

side these simulation based methodologies it is possible to determine the optimal management

of a storage by deriving a stochastic differential equation and solving this equation analytically

(Hodges (2004)) or numerically (Thompson et al. (2003)). Other applications of real options to

energy related topics include also the work Tseng and Barz (2002) applying real options to evalu-

ate the flexibility offered by a power plant and Hahn and Dyer (2008), who determine the value to

switch between gas and oil extraction, employing a recombining tree approach. However all these

approaches assume the asset owner to act as price taker with his decision not affecting market

prices. However in many parts of the world, including continental Europe, markets for natural gas

are still in their infancy and commonly lack of market liquidity. In this case the management deci-

sion of a storage owner and market prices will be interdependent since decisions of an individual

storage operator are likely to affect market prices.

The understanding of liquidity is quiet different in literature. Keynes (1930) denotes an asset as

liquid if it is "realisable at short notice without loss". According to Amihud and Mendelson (1986)

"llliquidity can be measured by the cost of immediate execution." Geman (2007) states that "Liquid-

ity may be measured by the size of the trade it takes to move the market." In Ghysels and Pereira

(2008), "an asset is liquid if large quantities can be traded in a short period of time without moving

the price too much". Further definitions of liquidity can be found in Brennan and Subrahmanyam

(1996), Vayanos (1998) or Boyle and Guthrie (2003). Conversely, illiquidity may be measured by

the impact individual trades have on the market price. This is the definition retained here.

To analyse the impact of this limited market liquidity, we propose an advanced model for storage

valuation, incorporating a market liquidity function. The proposed methodology supposes that the

storage operator anticipates the limited market liquidity and takes it into the account in each of his

operating decisions. This approach may easily be adapted to the valuation of other flexible assets

interacting with liquidity-limited markets.
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The remainder of this paper is organized as follows: section 2 analyses liquidity in gas markets

and modeling approaches to quantify the possible impact of storage operations to market prices.

The third section describes the proposed valuation methodology. Subsequent, the fourth section

applies the methodology to an exemplary German storage facility. Finally section 5 concludes.

2 Market liquidity

2.1 Liquidity on natural gas markets

The most important market places for natural gas in Europe are the NBP (National Balancing

Point) in the United Kingdom, the Dutch TTF (Title Trasfer Facility) and the Zeebruegge Hub in

Belgium. The NBP, founded in 1996, is the oldest and largest of these markets. It allows trading of

natural gas spot and futures contracts. Trading is possible from one day ahead to 10 years ahead.

The Zeebrugge Hub, established in the year 2000, is the first hub in Europe providing possibilities

of intercontinental gas trading given the nearby LNG terminal. The products range from spot to

futures products. The TTF, set up in 2003, is rather similiar to the NBP and allows also trading of

short- and long-term futures.

Table 1 gives an overview of the most relevant data for the three gas markets. It is obvious that

the total trading volume at the NBP by more than thirty five times higher than the volume at the

TTF and exceeds the volume at the Zeebrugge hub by a factor of more than twenty. The TTF

has a lower total trading volume than the Zeebrugge hub. Regarding the national consumption at

the NBP the ninefold of the national consumption volume was trated in 2007, whereas the volume

traded at the TTF just account for little more than two-thirds of the Dutch consumption. At the

Zeebruegge Hub more than twice of the national consumption is traded. Finally the traded volume

in Germany accounts for less than a tenth of a percent in 2007. A further important characteristic

of a market is the churn rate defined as relation of virtually traded volume to physically traded

volume. We calculated the churn rate for the market places above and found that the results are

within the range described by Stern (2007).

As reference for a liquid market place commonly the "Henry Hub"’, as the largest hub in the world,

is cited. This hub is a high liquid natural gas market place with a churn ratio of one hundred. (IEA

(2002)) As Table 1 depicts the liquidity of the European markets is substantial below the liquidity of

the "‘Henry Hub"’ market place. As measured by the churn rate the NBP is the market place with

the highest liquidity. Although the liquidity of TTF and the Zeebruegge Hub is low, these markets
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Table 1: Key liquidity statistics of major European gas markets.

NBP TTF Zeebruegge NCG

UK Netherlands Belgium Germany

Year 2003 2007 2003 2007 2003 2007 2003 2007

Traded Volume [TWh] 6755 9955 24 290 430 447 . . . . . .

Churn Rate 12.7 14.0 1.8 3.7 3.8 5.1 . . . 1.7

National
Consumption [TWh]

1109 1059 465 430 187 192 1033 999

Note: Data source: own calculations based on Gastransportservices (2009), Huberator (2009) and
IEA (2008).

offer higher liquidity than the virtual trading point in the German grid area "‘NCG"’ (Net Connect

Germany) installed in 2007. The churn rate of this market was about 1.7 in 2007, (IEA (2008))

which is less than half of the liquidity of the "‘illiquid"’ TTF, allthough trading increases rapidly at

the NCG. In January 2007 the amount of trades was about one TWh. Within less than a year this

amount expanded to 21 TWh in December 2007. (IEA (2008)) In 2008 NCG stayed the European

market place with the highest trading volume growth rates. Whereas the traded volume at the

NCG growed by more than 280 percent, the traded volume growth at the other market places was

about 120 percent for the TTF, twelve percent for the NBP and six percent for the Zeebruegge

Hub. (IEA (2009))

2.2 Liquidity modelling

In the literature, several methods for measuring liquidity have been developed. Amihud and

Mendelson (1986) base their calculations on the bid-ask spread and focus in the case of stock

markets on the the return-spread relation. For modelling the impact of trading volumes on prices,

the work of Kempf (1999) as a measure of liquidity is however more suited. He also bases his

calculations on the bid-ask spread but provides a regression model of the dependency of prices

and volumes. According to Kempf (1999) the regression function is then given by

p(t)− S(t) = αx(t) + ε(t). (1)

Based on this regression the liquidity is described by the slope α of the corresponding price

demand curve:

p(x) = p0 − αx. (2)
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Hence a large α correspondes to an illiquid market, whereas α = 0 represents the case of a

perfect market. The liquidity measure α may depend on time t and trading volume x. Due to the

lack of empirical data we assume α to be time and volume independent. To measure liquidity for

a certain market commonly order book data are necessary. However order books of the relevant

markets are in general not published. Thus, recent research considering market liquidity like Hall

and Hautsch (2007) deals with limit order book modelling. For our purpose a detailed modelling

of the order book is not essential, due to the fact that the operating strategy mostly depends on

the resulting price demand function. Figure 1 illustrates the interdependence between order book,

bid-ask spread, trading volume and price demand function.

Figure 1: Exemplary order book and liquidity function.

A fast and simple way to evaluate α is taking the average bid-ask spreads and average trading

volume to calculate α. This estimation is based on bid-ask spreads S and trading volume x. Here

S is defined as follows:

S = pbid − pask. (3)

Applying the parameters defined above, α is calculated as follows:

α =
S
2x

. (4)

For a better evaluation, a linear regression can provide more information. For the German electric-

ity markets, Weber and Woll (2008) measured the impact of the trading volumes to the electricity
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price applying a price demand function introduced above. They included this liquidity function

in a portfolio optimization. In this context the consideration of liquidity shows different results in

comparison with other portfolio optimization approaches.

3 Storage valuation under limited market liquidity

In evolving deregulated markets with a high degree of uncertainty, assets like natural gas storages

offer the possibility to react flexibly to changing market conditions. Nevertheless the value of

flexibility is limited by the liquidity of the considered market. Extending the gas storage valuation

model of Thompson et al. (2003), we postulate a storage operator who takes the market liquidity

into the account of his decision calculus. Under the assumption, the proposed methodology

determines the optimal value and operation simultaneously. The option offered by a natural gas

storage contains the managerial flexibility offered by other real options. In fact gas storages offer

the possibility to buy or sell a good as well as to wait for changing markets conditions. Since these

are the operational possibilities offered also by many other operative real options, the proposed

methodology may easily be adjusted to other types of real options.

Beside spot market prices and market liquidity, the technical constraints of a storage have a

major impact on the value and operation of a storage. Therefore, prior to the mathematical model

description, a brief overview on fundamental technical and economic storage characteristics is

given in the following.

3.1 Model formulation

Underground storage sites may be divided into two main types: on the one hand pore storages,

beeing mostly aquifers or former gas fields, and on the other salt cavities. (IGU (2006), FERC

(2004)) Whereas former gas fields offer high storage capacities, salt cavities commonly have

lower capacities. Stored gas has to be devided into the amount of gas required to deliver the

essential technical pressure, labeled cushion or thereby base gas, and the amount of gas actually

injected or withdrawn, the working gas. For former gas fields, the share of cushion gas can attain

up to fifty percent of the total storage volume. Salt cavities, built by solution mining of salt domes,

have lower cushion gas ratios, here up to thirty-five percent of the total storage volume are used

as cushion gas. (IEA (1994)) Beside the amount of gas that can be stored the flexibility of a stor-

age facility is basically influenced by the maximum injection and withdrawal rates cmin and cmax.

Since salt cavities offer high withdrawal and injection rates, they provide higher flexibility and may

be cycled on a higher frequency within a year than former gas fields. Withdrawal and injection
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rates are influenced by the pressure within the storage facility and consequently they depend on

the storage level I(t). Lower inventory levels permit higher injection levels whereas higher stock

levels result in larger withdrawing rates.

Alongside these technical constraints, also the operating costs a(I, c) of a storage facility af-

fect the operation and value of a storage. A major part of the variable costs is determined by

the amount of gas used for injecting the gas into the storage respectively withdrawing it. Thus

operating costs may be approximated by the rate of gas losses which is commonly taken as one

percent of the withdrawn/injected gas. (Dietert and Pursell (2000)) This amount of gas is notably

used to run the compressors that inject the gas into the storage or to adjust the temperature and

the pressure of the withdrawn gas in order to match the conditions of the connected pipeline grid.

Beside the technical constraints of a storage facility, the assumed price process for the underly-

ing commodity, natural gas, has a major impact on the management and the value of the facility.

Hence it is necessary to apply an appropriate price model. To cope with a broad class of under-

lying price processes, the following general jump diffusion process is proposed to describe the

price movements:

dP = µ(P, t)dt + σ(P, t)dX + Φdq. (5)

Here the deterministic drift rate µ(P, t) can incorporate also a mean reversion rate. In the second

term dX denotes the increment of a Brownian motion. Within the third term, the increments dq of

a Poisson process are defined as follows:

dq =


1 with probability λ(P, t)dt,

0 with probability (1− λ(P, t))dt.
(6)

With λ denoting the average frequency of a jump per unit of time. This price process allows

capturing major characteristics of natural gas prices: seasonal cycles, mean reversion and jump

components. Since an important share of European natural gas demand is used for domestic

heating, natural gas prices are significantly influenced by temperature and thus exhibit seasonal

cycles. Additionally gas storage is only for limited quantities and residential demand is almost

price inelastic. Thus high demand facing limited supply can trigger significant price jumps. Peri-

ods of extreme weather are however of limited duration and afterwards prices tend to normality

- thus mean reversion is to be expected. On the other hand, the proposed price process also

encompasses alternative stochastic specifications such as the so-called geometric Brownian mo-

tion.

The aim of the model is to assess the value of the flexibility to buy or sell any amount c(t, P, I, α)
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of the underlying good within the given capacity constraints cmin and cmax under consideration of

the given price P, the storage content I(t) and the given market impact of an action α. Taking

an interest rate of ρ into account and assuming a scrap value of zero at the end of the valuation

period T, the objective function at the beginning of the valuation period can be written as follows:

max
c(t,P,I,α)

E
[∫ T

0
e−ρτ(c− a(I, c))(P− αc)dτ

]
. (7)

In an illiquid market, operating the storage facility will have an impact on the price, thus the ob-

jective function is calculated taking into account the price demand function including the liquidity

parameter α. As α is assumed to be non-negative, buying an amount of the underlying good

(negative c) leads to increasing market prices, whereas selling the underlying results in lower

prices. Therefore, the amount that is sold or bought is determined under consideration of the

market impact of the selected action. To solve this scheduling problem, the value at time step t is

analogously formulated as:

V(t, P, I) = max
c

E
[∫ T

t
e−ρ(τ−t)(c− a(I, c))(P(τ)− αc)dτ

]
. (8)

Splitting the intervall [t, T] into [t, t + dt] and [t + dt, T], equation (8) can be rewritten as follows:

V(t, P, I) = max
c

E
[∫ t+dt

t
e−ρ(τ−t)(c− a(I, c))(P− αc)dτ

+
∫ T

t+dt
e−ρ(τ−t)(c− a(I, c))(P− αc)dτ

]
. (9)

Using equation (8) the (basic) problem can be reformulated as a dynamic programming problem:

V(t, P, I) = max
c

E
[∫ t+dt

t
e−ρ(τ−t)(c− a(I, c))(P− αc)dτ

+ e−ρdtV(t + dt, P + dP, I + dI)
]

. (10)

Whereas the storage volume change dI is calculated as follows:

dI = −(c + a(I, c))dt. (11)

For a sufficiently small time increment dt, the first part of equation (10) can be understood as the

immediate cash flow resulting from a decision at time step t. The second term then represents

the expected discounted future value after the decision at time step t. Applying a Taylor’s Series
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expansion and Itôs Lemma (Øksendal and Sulem (2007)) to equation (10) we get:

V = max
c

E
[
(c− a(I, c))(P− αc)dt + (1− ρdt)V

+ (1− ρdt)
(

Vt +
1
2

σ2VPP + VPµ− (c + a(I, c))VI

)
dt

+ (1− ρdt)
(
σVPdX + (V+ −V)dq

) ]
. (12)

Where V+ = V(t, P + Φ, I) represents the value of the storage if the price has jumped by an

amount of φ. Applying Itô calculus, taking expectations and dividing through dt results in:

0 = max
c

[
1
2

σ2VPP + Vt + VPµ− (c + a(I, c))VI

+ (c− a(I, c))(P− αc) + λE[(V+ −V)]− ρV
]

. (13)

For an optimization with respect to c it is sufficient to focus on the terms in (13) including c:

max
cmin≤c≤cmax

[−(c + a(I, c))VI + (c− a(I, c))(P− αc)] . (14)

Simplifying this equation results in:

max
cmin≤c≤cmax

OF(c). (15)

Whereas OF(c) is defined as follows:

OF(c) =
[
−αc2 + (P + αa(I, c)−VI)c− a(I, c)(VI + P)

]
. (16)

To find the optimal control copt, which maximizes equation (15) we assume the following cost

function:

a(c) =


βWc for c > 0, βW > 0

−β Ic for c < 0, β I > 0.
(17)

the objective function can be rewritten as follows:

OF(c) =


−αc2(1− βW) + (P(1− βW)−VI(1 + βW))c for c > 0,

−αc2(1 + β I) + (P(1 + β I)−VI(1− β I))c for c < 0.
(18)
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By contrast to an optimization without respect to limited liquidity this equation is quadratic with

respect to c. To derive the optimal operating strategy, we apply a first order condition on the first

derivative of equation (18) with respect to c. Thus the optimal injection and withdrawing amounts

are given by:

cW =
P(1− βW)−VI(1 + βW)

2α(1− βW)
(19)

cI =
P(1 + β I)−VI(1− β I)

2α(1 + β I)
. (20)

These optimal withdrawing and injection volumes are additionally restricted by withdrawal and

injection capacity constraints. Therefore the withdrawal volume must not exceed the maximal pos-

sible withdrawal capacity just as the injection volume must not exceed the injection capacity. For

a positive α (which corresponds to an illiquid market) it can be seen that the optimal withdrawing

(injection) amount is not of the bang-bang control type, but depending on the level of illiquidity

quantified by α. As we define cW to be positive and cI to be negative, it is possible to derive the

threshold prices for withdrawing and injection by applying this conditions to the equations (19) and

(20). For a release of gas the following condition must hold:

P >
VI(1 + βW)
(1− βW)

=: Pout. (21)

Analogous the price threshold for an injection can be derived:

P <
VI(1− β I)
(1 + β I)

=: Pin. (22)

Hence, this price thresholds are influenced by injection and withdrawing costs (βW and β I) and

the opportunity costs represented by VI . As VI can be construed as the incremental/decremental

storage value resulting from an injection/withdrawing of gas, an decreasing VI expedites a with-

drawing but postpones an injection of gas. We can obtain the optimal storage strategy with respect

to these restrictions als follows:

copt = arg max
c∈{cW ,0,cI}

{OF(c)} . (23)

Since the second derivative of equation (18) with respect to c is always negative for positive α and

βW smaller than one, copt certainly is a global maximum for given VI and P.

To solve the differential equation (13), border and terminal conditions are necessary. Generally,

this edge conditions do not differ from those in Thompson et al. (2003). The first condition can be
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derived from equation (7) where a scrap value of zero is assumed. Hence, the following terminal

condition can be stated:

V(T, P, I, c) = 0. (24)

Next, the first derivatives with respect to I are considered for a full and an empty storage. For a

full storage it is not possible to inject more gas, hence the incremental value considering I equals

zero. Regarding the storage capacity constraints, the storage cannot be filled above the maximum

capacity and cannot be emptied below the volume level zero. Hence, additionally the following

boundary conditions must hold:

(c + a(I, c)) ≥ 0 for I = Imax (25)

(c + a(I, c)) ≤ 0 for I = 0. (26)

Finally the following condition must be satisfied for the second derivative with respect to P:

VPP −→ 0 for P large (27)

VPP −→ 0 as P −→ 0. (28)

Applying copt to equation (13), this differential equation is hyperbolic in I. This can cause spurious

oscillations. (Thompson et al. (2003)) Thus we adopt the numerical handling of this problem of

Thompson et al. (2003) and apply the slope delimiter described in LeVeque (1999).

3.2 Real options and liquidity

The main difference of including limited liquidity into the option valuation is that it leads to a

quadratic optimization problem. For a price taker, in each moment of time the operation value

is a linear function of injection/withdrawal volume. The slope of this function is determined by

the price, the opportunity costs VI and the withdrawing or injection costs (cf. equation (18) for α

equal to zero). (cf. Thompson et al. (2003)) In this case the goal is to maximize a linear objective

function (OF). Figure 2 shows this case for different combinations of P and VI . The optimal

solution depends on the slope of the OF. A positive slope in addition to a positive corresponding

value of the OF let the right boundary being optimal (cf. OF1, OF2). The case of a negative slope

and the value of the OF being positive leads to the left boundary as optimal solution. Furthermore

all objective functions cross the origin. Therefore, if the slope changes the sign (cf. OF1, OF2), the

optimal solution is "‘doing nothing"’ since this case corresponds to a negative objective function for
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all possible withdrawing and injection strategies. Overall there are only three possible solutions.

These are taking the left boundary (injecting at maximum capacity), taking the right boundary

(withdrawing at maximum capacity) or doing nothing.

OF
OF1

OF2

OF3

OF1

OF2

OF3

cmaxcmin

Figure 2: Linear objective function.

In our approach, including liquidity, the goal is to maximize a quadratic OF. Due to the fact that the

price is a linear function of injection/withdrawal volume and the operation value is the product of

price and injection/withdrawing volume, the OF is a quadratic function. Figure 3 shows this case.

This picture depicts different objective functions depending on the parameter choice of P and VI .

It is obvious that the set of all maximal turning points is also a quadratic function (solid black

line). The optimal solution of our problem depends on the position of the corresponding maximal

turning point. As above all objective functions cross the origin. Hence, if the maximal turning point

is equal to the origin, the optimal solution is "doing nothing" because it is better to have zero than

a negative value as objective (cf. OF2). If the maximal turning point is in between the left and the

right boundary and positive, the optimal solution results as corresponding value of the maximal

turning point (cf. OF1 and OF3). If the maximal turning point lies outside of this boundaries, the

optimal solution is the corresponding boundary. Thus in our approach every value between the

left and the right boundary can arise as optimal solution.

The fact that positive trading volumes (corresponding to withdrawing gas from the storage) have

a decreasing effect on the prices, leads to the optimal volume being a piecewise linear increasing

function of prices. The non-zero slopes of this function depend on the liquidity of the markets

(cf. equations (19) and (20)). The higher the liquidity, the higher is this slope. This is consistent

with the linear case, where perfect liquidity is assumed and therefore the non-zero slopes of this
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OF

cmaxcmin

OF1 OF2

OF_agg OF3

OF1

OFagg

OF2

OF3

Figure 3: Quadratic objective function.

function are infinity.

Since liquidity can change over time and since different markets show different liquidity, we

analyse the dependence of V and copt on the liquidity measure α. The derivative of V with respect

to α results as:

∂V
∂α

=


−c2(1− βW) for c > 0

−c2(1 + β I) for c < 0.
(29)

Since βW is defined as fractional amount of c, this derivative is always negative. Thus, for de-

creasing liquidity (increasing α) the storage value decreases. The derivative of copt with respect

to α leads to:

∂copt

∂α
=



VI(1+βW )−P(1−βW )
2α2(1−βW ) for copt = cW

0 for copt = 0

VI(1−β I)−P(1+β I)
2α2(1+β I)

for copt = cI .

(30)

The sign of this derivative depends on the relation of VI and P. The case of (VI(1 + βW)− P(1−

βW)) being negative, indicates that the derivative is negative and also that the optimal strategy is

to withdraw. Hence, an increasing α results in a decreasing withdrawal volume. The opposite way

around, if (VI(1− β I)− P(1 + β I)) is positive, the derivative is positive and the optimal strategy

is to inject. In this case we have to keep in mind, that injection is defined negative. Therefore an

increasing of α leads to an increasing of copt, what is equivalent to a decreasing injection amount.

However, as this is a comparative statics consideration, the generality of these results solely holds

for the presumption of VI independent from α.
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4 Application

In this section the developed approach is applied to determine the optimal schedule and the

corresponding revenue of the existing gas storage Epe, owned by E.ON Ruhrgas and located in

Germany. This storage offers the possibility to release gas and to sell it at the spot market or to

buy at the spot market and inject this gas into the storage. This flexibility is evaluated applying the

above derived methodology to the exemplary storage Epe in a market with limited liquidity. Since

Epe is located at the border to the Netherlands, data from the Dutch gas exchange, the Title

Transfer Facility (TTF) are taken to estimate the liquidity measure and the relevant price process

parameters. To illustrate the impact of limited liquidity for the storage valuation, the calculations

are done for different levels of liquidity. Thereby a comparison of the optimal schedule and the

storage value is done.

4.1 Storage data

Employing a conversion factor of 113 m3 for 1 MWh and considering the storage capacity data

offered by IGU (2006), Epe offers a withdrawal rate of 18.8 GW and an injection rate of 4.6 GW.

Considering the working gas capacity of 13850 GWh it is possible to refill an empty storage within

126 days and to release a full storage in 30 days. Thus the storage can be cycled more than twice

in one year. Beside the working gas, the storage must hold a certain amount of cushion gas to

keep the essential pressure for the operation of the storage. For Epe this amount is 5585 GWh or

29 percent of the total storage capacity including cushion and working gas.

To cope with volume dependent withdrawal and injection rates, the approach of Thompson et al.

(2003), applying the ideal gas law and Bernoulli´s equation, is adopted to our specific storage ex-

ample. We choose this approach due to the comparability to the model of Thompson et al. (2003).

Alternative less general but more detailed data, available at the storage operator (E.ON (2007))

can be applied to the methodology to cope with volume dependent injection and withdrawal rates.

Operating costs are approximated according to equation (17). Including transaction and other

operating costs beside the losses for injection and withdrawing we assume βW and β I as two

percent.

4.2 Liquidity estimation

To compute the liquidity measure α for the regarded gas market, we take day ahead product

data from NBP, TTF and Zeebruegge. This data is published on a daily basis and prepares the

necessary information for measuring α. The available period ranges from 19th february 2007
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to 5th february 2009. The results of applying equation (4) to the historical data (S and x) are

displayed in Table 2.

Table 2: Results for liquidity measure α.

NBP TTF Zeebruegge

Bid ask spread S [EUR/MWh] 1.17 1.06 0.40

Average trading volume x [MW] 5232.49 3477.32 927.11

α [EUR/MWh/MW] 0.00011 0.00015 0.00021
Note: Data source: own calculations based on Spectron (2008) and Energate (2008).

It is obvious, that NBP is the market with highest liquidity. Although the bid ask spread of Zee-

bruegge is less than half of the spread of NBP, the liquidity of NBP is nearly twice the liquidity of

Zeebruegge. The reason for this is that the average day ahead trading volume of NBP is more

than 5 times the volume of Zeebruegge. The liquidity of TTF is in the middle of Zeebruegge and

NBP liquidty. Figure 4 depicts historical price and volume data from the TTF. Considering the max-

imal withdrawal and injection rates of Epe with respect to the TTF market liquidity a withdrawal

(injection) of gas at maximum capacity decreases (increases) the market price by 2.82 (0.68)

EUR/MWh. For 2007 this is a decrease of almost twenty percent of the average market price for

withdrawing respectively an increase of five percent for injecting.
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Figure 4: Prices and volumes at TTF.



15

4.3 Price process parameter estimation

In addition to the storage capacity data and the computation of α it is necessary to compute the

relevant parameters of the underlying price process. To incorporate the main characteristics of

natural gas prices: seasonality and jump components (cf. Figure 4 ), a mean reversion jump

diffusion process is assumed as underlying price process. The parameter estimation is done in

two steps: At first the jumps within the historical price data are filtered, applying the approach

described in Weron (2006). This approach estimates the jump intensity λ, the mean jump size µs

and the jump size standard deviation σs by selecting all historical prices as jumps which are above

two standard deviations of the mean price. Subsequent the filtered jumps are used to calculate

the relevant jump parameters. This estimation is done iterative until the jump intensity λ does not

change within a predefined confidence interval. In a second step the parameters of the mean-

reversion process are estimated applying a least squares regression approach proposed in Dixit

and Pindyck (1994) to the adjusted historical data without jumps. For historical price data Pt and

an error of εt this is done as follows:

Pt − Pt−1 = A + BPt−1 + εt. (31)

Whereas A and B are the axis intercept and the slope of the regression line. Alternatively to

the regression approach a maximum likelihood estimation can be applied. The price parameters

were estimated applying the historical spot price index of the TTF in between 2004/04/01 and

2007/12/31. Thus an mean reverting level θ of 18 EUR/MWh and a mean reversion rate κ of

0.005 are resulting. This implies a half life time of 200 days. For the normal distributed jump size

Φ we estimated a mean µs = 0 and a standard deviation of σs = 7.4. Hence the jump size Φ

is N (0, 54.7) distributed. Calculating the volatility as standard deviation of the filtered absolute

price differences as 0.68 and setting µ(P, t) = κ(θ − P) the used price process can be written as

follows:

dP = 0.005(18− P)dt + 0.68dX + Φdq. (32)

Whereas dX denotes the increment of a standard Brownian Motion as in equation (5). The time

span dt is measured in days and dq denotes the increment of a Poisson process with jump inten-

sity λ = 0.07. The storage value is calculated applying a risk free interest rate of ten percent.
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4.4 Results

Implementing a simple explicit difference scheme we solve the stochastic differential equation

backwards starting at the last valuation day of 262 trading days. Computing the value of the

storage it is necessary to choose the discretization sensitivity of dt and dP with respect to each

other to achieve numerically stability. (Benker (2005)) Adopting the approach of Thompson et al.

(2004) the integral caused by the normal distributed jump size is solved approximated with the

trapezoid rule. Time is measured in days. To guarantee numerical stability we applied a time step

size of dt = 1
8 and a price step size of dP = 0.5. As described in Benker (2005) the following

condition for numerical stability of the solution then holds:

dt ≤ dP2

2
. (33)
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Figure 5: Storage schedule in t0.

Figure 5 depicts the resulting storage strategy at the beginning of the valuation period (for α =

0.0002). Furthermore there are three regions visible: injection (negative strategy), "doing nothing"

and withdrawing (positive strategy) whereas the maximum injection/withdrawal capacity is affected

by the volume of gas within the storage. Within the injection and withdrawal regions it is apparent

that the storage operator selects the maximum injection/withdrawal capacity only for very low/high

prices. The operating strategies above/below these prices are adjusted due to the price impact
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caused by the limited market liquidity. In contrast to this operating strategy, the storage strategy

in t0 with perfect liquidity leads to decisions of the bang-bang type: For given thresholds Pout and

Pin the strategy for all prices above Pout is to withdraw as much as possible. For all prices below

Pin the strategy is to inject as much as possible.
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Figure 6: Gas storage value comparison for different storage content levels and different levels of
liquidity at time step t0.

Figure 6 compares the value of the storage at the beginning of the valuation period for different

levels of illiquidity and for perfect liquidity for different volume levels. As Figure 6 depicts, an empty

storage at the beginning of the valuation period t0 can be seen as a put option on the storage ca-

pacity with strike price VI . The storage operator has the opportunity, to buy one unit of gas and

inject this unit into the storage. As the storage operator injects one unit of gas into the storage,

he looses one unit of "flexibility" delivered by the storage. Hence by buying and injecting one unit

of gas, the storage operator sells one unit of storage flexibility. On the other hand he obtains the

option to sell this gas, when prices are high enough. Hence the value of the above mentioned put

option grows with decreasing gas prices. Figure 6 illustrates further, that in an illiquid market the

strike price of this option is lower than in a market with high liquidity. In an illiquid market buying

one unit of gas increases the market price (cf. equation (29)). Therefore the storage operator

delays his decision to inject to lower market prices. As the storage level increases the above

mentioned put option turns into a straddle. As for the value of an empty storage, the value of

the straddle decreases with increasing illiquidity. A filled storage can be construed as call option.
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In an illiquid market every action of the storage operator affects the market price. This leads to

lower values than in markets with perfect liquidity, for all possible volume levels. Thus, postulating

a perfect market and assuming the storage operator as price taker can lead to an overestimation

of the storage value. Thus, beside the restrictions of withdrawal and injection rates the value of a

storage is affected by the level of market liquidity.
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Figure 7: VI sensitivity with respect to α for a storage content of fifty percent at time step t0.

Figure 7 shows the sensitivity of the "‘strike price"’, of the above described options, with respect

to α for a half full storage at the beginning of the valuation period. As liquidity decreases strike

prices VI (which can also be construed as reservation prices for one unit of gas in the storage)

are decreasing. Thus, expected future illiquidity costs, resulting from lower withdrawal returns

and higher injection costs, reduce reservation prices. As strike prices vary with respect to α, each

level of liquidity results in a different option with distinct strike prices and exercise strategies.

Figure 8 depicts the liquidity impact on the storage strategy for a storage level of fifty percent. It

can be seen that increasing liquidity (measured by α) leads to significant higher withdrawal and

injection volumes (outside of the "‘doing-nothing"’ interval of the perfect liquidity strategy). In this

case enhancing liquidity by twenty five percent from α = 0.0002 to α = 0.00015, which corresponds

to the liquidity function difference in between Zeebruegge and TTF, expands the withdrawal rate

by almost 20 percent for the mean reversion level of 18 EUR/MWh. Furthermore, higher illiquidity

results in a left shift of the price interval where the storage operator whether withdraws nor in-
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Figure 8: Strategy sensitivity with respect to α for a storage content of fifty percent at time step t0.

jects gas into the storage. This corresponds to the price thresholds for injection and withdrawing,

derived in the equations (22) and (21), in conjunction with decreasing reservation prices as illus-

trated by figure 7. Thus, as decreasing liquidity reduces the value of an in-/decremental unit in

the storage, the storage operator waits for lower prices for an injection and thus postpones the in-

jection. On the other hand, the storage operator tends to withdraw earlier as the reservation price

decreases. Nevertheless the threshold price for withdrawing at maximum capacity is increasing

with increasing illiquidity. Thus for increasing α the storage operator withdraws within a broader

price interval below maximum capacity.

5 Conclusions

This paper has derived a new methodology to valuate the flexibility of natural gas storages in

illiquid markets. This approach can be easily adapted to other assets offering flexibility. We

have shown that the existence of an illiquid market decreases the storage value. Additionally

the storage strategy has to be adjusted in illiquid markets. We find that increasing illiquidity left

shifts the price interval where the storage operator whether injects not withdraws. Furthermore,

the operating strategies are reduced in a market with higher illiquidity (outside the price interval

where the storage operator would whether inject nor withdraw at perfect liquidity). Future research

can also cope with time and volume dependent liquidity measures. The model can be evaluated



20

considering different price processes (e.g. incorporating the seasonality of gas prices) or solve

the differential equation with a different numerical method, e.g. an implicit finite difference scheme.

The focus of future research can also lie on the measurement of the liquidity risk resulting from

an illiquid market. Finally, under certain restrictions, the analytical solution of this problem can be

of interest.
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